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Abstract In this work, the yield phenomenon and its

related features have been investigated under the concept

of strain inhomogeneity, emerged inside the material dur-

ing deformation processes. This strain non-uniformity in

glassy polymers is either a direct consequence of the local

microstructural density fluctuations existing in such mate-

rials or is the result of the manner by which the free volume

is frozen in the glassy state. Assuming a simple strain

density distribution function, the rate of plastic deformation

can be extracted without any further assumption on a

molecular conformational base or any other thermal acti-

vated process. The two model parameters required have a

physical base related with the magnitude of the free volume

and its fluctuation in glassy polymers. Appling this theory

on the experimental results for three representative amor-

phous glassy polymers (PMMA, PS, and PC), all features

of yield process, including strain softening effect, are easily

described.

Introduction

Virtually all solid polymers, under certain conditions of

temperature and strain rate, undergo a permanent shape

change when subjected to a stress of sufficient magnitude.

This plastic deformation, which is termed yielding, is

accompanied in most cases by a stress softening followed

by a strain hardening, when large deformation is applied

especially on ductile materials. Moreover, the yield stress

is sensitive to strain rate deformation, temperature and

pressure conditions, and thermal history, properties which

make the plastic phenomenon of polymers of great interest

for experimental and theoretical analysis. Most of the work

made in explaining these features is not restricted to the

concept of continuous medium, and the subsequent kine-

matic formulation of plasticity theory. In contrast, the

necessity of micromechanical description and deep inside

on molecular behavior is obvious for obtaining an accept-

able explanation of these effects [1–7]. In this trend,

originally the BPA model [5] and later the work by Hasan

and Boyce [6–8] illustrate many mechanical features of

most representative glassy polymers such as PS, PMMA,

and PC for various kinds of deformation modes and strain

rate conditions. What is common in all these systematic

works is the micromechanical model developed by Argon

[3], which deals explicitly with intermolecular resistance to

shear yielding. This analysis couples bond rotation (kink

pair formation) to intermolecular energy calculated with

continuum elasticity theory, and has the macroscopic yield

stress related directly with temperature and strain rate. The

Argon results closely resemble the Eyring [9] model, which

considers plastic transformation as a thermal activated

process; therefore, its special formulation leads to tem-

perature and rate dependencies that are virtually

indistinguishable from Eyring approach. The important

conclusion that resistance to plastic deformation at the

yield point is intermolecular in origin does not account

however in an obvious way for strain softening. In order to

overcome this shortcoming, BPA model [5] was developed

on the base that Argon’s concept of a thermal strength has

been varied by an empirical equation as plastic deformation

proceeds. In a more sophisticated way, Hasan and Boyce

[7], trying to capture all plasticity features of amorphous
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polymers including temperature treatments, developed a

constitutive model, by considering a distribution in the

activation energy barrier to deformation in a thermally

activated model of yielding process. Even in this approach

however they could not avoid semiempirical equations for

time evolution of a set of internal variables introduced for

the necessity of the proper description. Apart from these

shortcomings, what is interesting in their analysis is that

the plausible assumption of ‘‘pseudo-Gaussian’’ distribu-

tion of activated energy barriers is based on a similar

distribution of the amount and size of free volume holes

inside the substance of amorphous polymers. There was a

strong historic association between yield and free volume

concept, which is rejuvenated when positron annihilation

lifetime spectroscopy (PALS) [8] was used to probe free

volume in liquid and glassy polymers. PALS provides

unique information about the properties of subnanometer

size local free volume (holes) appearing due to the struc-

tural disorder in amorphous polymers [10]. This method is

able to measure the mean value and the size distribution of

these holes. By combining of this experimental evidence

with, for example, pressure-volume-temperature experi-

ments, the number of holes and their entire volume fraction

can be estimated [11–14].

The plastic behavior of glassy polymers has been

extensively and satisfactorily described by applying

models based on thermally activated process. However, to

overcome the shortcoming of explaining strain softening

with the use of extra parameters and the variation with

deformation, we will apply the concept of free volume to

introduce a new mechanism of yielding. Following this

trend, in this work, we will try to formulate in a plausible

and simple way the idea of free volume fluctuation for a

constitutive description of yield and post-yield phenom-

ena of amorphous polymers. The way to reconcile the

yield process with the free volume concept will be pos-

tulated on the assumption that not only the amount of free

volume but also the state of its subdivision within the

material plays a role in determining the corresponding

properties. Based on this idea, which was first used by

Hasan and Boyce as mentioned earlier, we will try to

introduce a density distribution function for the imposed

strain on the representative volume of deformed material.

By this way, the strain inhomogeneity that accompanies

plastic deformation will be taken into account, and the

subsequent strain softening effect will be described. For

obtaining such a result, we will avoid the common

kinematic plastic formulation of multiple decomposition

of deformational tensor, because such a description

eliminates the advantage of strain inhomogeneous across

the representative volume element. Instead of this

approach, we will use the kinematic formulation intro-

duced by Rubbin [15, 16], as has been done successfully

by us in related previous works [17, 18]. The constitutive

theory will be tested by comparing the results with the

representative experimental work for amorphous polymers

existing in bibliography.

Model for the free volume distribution

For many years, the glassy state and the melt of polymers

have been considered to be homogeneous and random in

structure. However, a lot of experimental results have been

obtained that seem to indicate that the amorphous phase of

polymers is not homogeneous on the microscopic level.

Especially the small-angle X-ray scattering technique

proved to be a convenient way of determining density

fluctuation of amorphous polymers in liquid and glassy

state, and its utility in the study of glassy polymer was first

demonstrated by Wendorff and Fisher [19]. Curo and Roe

[20], on the other hand, also utilized the technique of X-ray

scattering to correlate the change of the specific volume

with that in the density fluctuation, for three widely used

polymers (PS, PMMA, and PC). Based on their experi-

mental results, Curo and Roe [21] derived an equation,

which relates explicitly the density fluctuation of glassy

state with the free volume fraction (or hole volume) in

amorphous polymers. By taking into account the value of

0.025 for the free volume fraction (as it is calculated for

most polymers through the WLF [22] equation), they

estimate the cavity size in glassy polymers � 0:5 nm in

diameter, which agrees reasonably well with data on the

positron annihilation and ultrasonic velocity obtained by

Mathotra and Pethrick [23, 24]. Based on the above-men-

tioned results, it is plausible to assume that inside the

matrix of amorphous polymers, free volume, constituted

from holes of varying sizes, is randomly distributed around

polymer molecules. The question is if it is possible to

extract a probability density function expressing the way in

which the total amount of free volume is distributed inside

the material matrix.

Following the experimental evidence provided by

PALS, a semiempirical relation of the lifetime s3 of

orthopositronium and the radius R of a spherical PALS free

volume hole is widely known [25]:

s3 ¼
1

2
1� R

R0

þ 1

2p
sin

2pR

R0

� ��1

ð1Þ

where R0 = R ? dR with dR expressing the thickness of an

electron layer on the wall of a hole, estimated to be equal to

0.166 nm. In the same experimental method (PALS), a

continuous distribution of the inverse of the longest

lifetime n(1/s3) can be obtained by analyzing the PALS

spectra, which leads to the radius distribution f(R) as:
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f ðRÞ ¼ 2dR cos
2pR

Rþ dR
� 1

� �
nð1=s3Þ
ðRþ dRÞ2

ð2Þ

Then it is possible to obtain the free volume distribution

as:

gðVÞ ¼ f ðRÞ
4pR2

ð3Þ

This distribution function in a series of amorphous

glassy polymers [25] manifests certain features of the

materials, such as synthesis, curing schedule, thermal

treatment, and in all cases is expressed mainly with one

characteristic peak.

In the sequel, an attempt will be presented to extract this

free volume distribution function, based on a statistical

ensemble in thermodynamic equilibrium, as the polymeric

glass above Tg, assuming that its possible energy states

follow a Boltzmann distribution.

Considering the macromolecules of an amorphous poly-

meric glassy in the liquid state, it is assumed that under a state

of random thermal motion, some of these molecules may pull

apart in such a way as to open a void or a hole in the liquid.

As a crude model, it is assumed that each piece of free

volume comes in a spherical shape of radius R and that the

energy of the free volume is equal to ER = 4pcR2, where c
is the surface energy per unit area, almost equal to the

surface energy of the liquid. According to the Boltzmann

distribution, the possibility P for a macromolecule to

neighbor with a hole of radius R at a certain position r is

given by the expression:

P ¼ c exp �ER

kT

� �
where ER ¼ 4pcR2 ð4Þ

where c is a constant, k is the Boltzmann constant and T is

the temperature.

The desired probability of finding a state at a position

between r and r ? dr with a hole of radius between R and

R ? dR will thus be:

Pðr; RÞ d3r d3R ¼ c expð�ER=kTÞd3r d3R ð5Þ

Therefore, the mean number of states per unit volume,

which have radius R with values between R and R ? dR

will be:

f ðRÞ d3R ¼ NPðr; RÞd3r d3R

d3r
¼ N c exp �4pcR2=kT

� �
d3R ð6Þ

where N is the number of states having positions between r

and r ? dr, of which a fraction is given by the probability

P(r, R) d3r d3R.

Due to the fact that R does not have a preferred position

in the space, function f(R) depends only on the magnitude

R of R. Therefore, we have:

f ðRÞ ¼ f ðRÞ ð7Þ

Hence, the mean number of states per unit volume with

radius R between R and R ? dR is:

FðRÞ dR ¼
Z
0f ðRÞ d3R ð8Þ

where the prime on the integral indicates that the integra-

tion is over all vectors R satisfying the condition

R\ Rj j\Rþ dR, that is, over all vectors R that terminate

in a space within a spherical cell of inner radius R and outer

radius R ? dR.

Since dR is infinitesimal and f(R) depends only on the

magnitude of R, the function f(R) has essentially a constant

value over the entire domain of integration, and can thus be

taken outside the integral. The remaining integral repre-

sents merely the volume of a spherical cell of radius R and

thickness dR, that is, a volume equal to 4pR2 dR. Hence the

previous relation becomes:

FðRÞ ¼ N c 4pR2 exp � 4pcR2

kT

� �
ð9Þ

The mean value of radius R can be easily extracted from

Eq. 9 at the position where the first derivative of function

F(R) becomes zero:

dFðRÞ
dR

����
R¼R

¼ 0) R ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pc=kT

p ð10Þ

Following Eq. 9, we can write in analogy, the free

volume distribution function g(Vf) = F(R)/(4pR2):

gðVfÞ ¼ N c 4pR2 exp � 4pcR2

kT

� �
ð11Þ

By setting N = Vf

V f
, where V f is the mean value of the total

free volume Vf, and considering that constant c of Eq. 11 can

be calculated taking into account that the integration of the

density probability function will be equal to unity, we have:

Z1

0

gðVfÞdVf ¼ 1) c

Z1

0

Vf

V f

exp � Vf

V f

� �2=3
 !

dVf ¼ 1

ð12Þ

Equation 12 gives c ¼ 1=3V f ; therefore the probability

density function is given by:

gðVfÞ ¼
1

3

Vf

ðV fÞ2
exp � Vf

V f

� �2=3
 !

ð13Þ

Equation 13 is the probability density distribution

function for the free volume of liquid state. Assuming

further that the free volume at the equilibrium state is

established into the bulk in the frozen-in process, Eq. 13 is

also the probability distribution function for the free

volume in the glassy state.
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Let us proceed further to the state where a strain field e
has been applied to the representative volume V of the

tested material subjected to plastic deformation. The

regions in which this volume has been related with the

largest amount of free volume will be the most probable

candidate for yield transition that takes place at a critical

strain e. The corresponding probability for this event to

take place inside the material will be given by the fol-

lowing equation,

gðeÞ ¼ 1

3

e

ðeÞ2
exp � e

e

� �2=3
 !

ð14Þ

where e expresses the mean value of the distributed strain

into the material. Using this equation, the number of sites

that have been subjected to plastic transverse, after strain e
has been applied, is given by the following integral:

NðeÞ ¼
Ze

0

de gðeÞ ¼
Ze

0

1

3

e

ðeÞ2
exp � e

e

h i2=3
� �

de ð15Þ

The above-obtained integral can be used in the

following for the calculation of the rate of plastic strain

deformation _ey if we assume that each site is transit at yield

state by a constant rate _j, which will be verified later in this

work. The corresponding plastic strain rate equation will be

given by the following equation,

_ey ¼ _jNðeÞ ¼ _j
1

3

Ze

0

e

ðeÞ2
exp � e

e

h i2=3
� �

de ð16Þ

The value of the characteristic strain e, around which the

above-introduced distribution function works, is related

with a specific microstructural parameter, expressing the

strain above which no more elastic strain is developed.

Constitutive equations

Among the various trends, that undertake to formulate a

complete set of constitutive equations for plastic behavior of

materials, many different approaches have been established

up to now. Some of these differences cause limited results

on the related phenomena, but others are of important con-

sequences for the whole formulation, which occasionally

was attempted. One of the main differences among the

various contributions concerns the multiplicative decom-

position of the deformed gradient tensor F (Lee [26]).

According to this widely accepted assumption, the tensor F,

which describes the way a material element dX deforms in a

line element dx in the present state, is separated into the

elastic and plastic parts Fe and Fp correspondingly. The two

tensors lack an explicit determination in the present

configuration of the material elements, because each of them

is referred to different configuration states. To avoid this

problem, a detailed description has been developed by

Rubin [15, 16] who extended the ideas by Eckart [27] and

Besseling [28]. In his work, an evolution equation has been

specified including the relaxation effects of plastic defor-

mation without introducing a plastic deformation tensor

explicitly. Although Rubin’s treatment has been introduced

for describing a general anisotropic response of crystalline

metals, his analysis can be applied as a constitutive theory

for general description of the plastic behavior of materials.

According to his assumption, the elastic deformation of

each material point has been formulated through a triad of

vectors mi ði ¼ 1; 2; 3Þ, which are related to dilatation,

distortion, and orientation of a mean atomic lattice in

respect to some reference state. Since the vectors mi

characterize the atomic lattice in the present state, they are

not directly connected to the material line elements, but

they can be used explicitly as a basis for tensor referred to

the present configuration as well. In the reference config-

uration state associated with the material, when it is stress

free, this triad of vectors constitutes a set of orthonormal

vectors, implying that the corresponding metric tensor mij

equal to mij ¼ mi �mj is given by:

mij ¼ dij ð17Þ

In order to define the change of the volume element we

are referred to, the dilatation Jm (which is unity in the

reference lattice state) is introduced and given by:

jm ¼ m1 � ðm2 �m3Þ ¼ ðdet mijÞ1=2 ð18Þ

Moreover, to define the distortional measures of the

elementary volume, Rubin has introduced another set of

orthonormal vectors mi
0 defined by the equations:

m0i ¼ J�1=3
m mi with m0ij ¼ mi

0 �mj
0 ¼ J�2=3

m mij ð19Þ

It is easily then extracted that:

det m0ij ¼ 1 ð20Þ

The microstructural variable mi is determined by an

evolution equation of the form:

_mi ¼ Lmmi ð21Þ

where the second order tensor Lm corresponds to the elastic

velocity gradient and is assumed to be separated additively

into the form:

Lm ¼ L� Lp; Lp ¼ Dp þWp ð22Þ

where L and Lp are the velocity gradients of total and

plastic deformation, respectively, and Dp and Wp are the

symmetric and antisymmetric parts of the velocity

gradients that need to be specified by constitutive

equations. It follows from (18), (19), (20), and (20) that
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_Jm

Jm
¼ D � I; D0 ¼ D� 1

3
ðD � IÞI;

_mij ¼ 2ðD0 � DpÞ � ðmi
0 �mi

0Þ ð23Þ

where D0 is the deviatoric part of the corresponding

symmetric part D of the total velocity gradient tensor L. In

extracting the above relations, the plastic incompressibility

Dp � I ¼ 0 ð24Þ

has been used, while symbol � denotes the tensor product

between two vectors, and I represents the identity tensor. The

dot product A � B between two tensors denotes the usual

scalar product when A and B are vectors, and it denotes the

scalar tr(ABT) when A and B are second order tensors.

Concerning uniaxial stress in the e1 directions in respect

to a fixed rectangular Cartesian base vectors ei, which are

parallel to mi, it can be shown that the velocity gradient is

specified by the following form:

L ¼ D ¼ _a
a

e1 � e1 þ
_b

b
e2 � e2 þ

_c

c
e3 � e3 ð25Þ

where a, b; and c represent the stretches of the material line

elements in the coordinate directions e1, e2, and e3,

respectively, with the following initial conditions:

að0Þ ¼ bð0Þ ¼ cð0Þ ¼ 1 ð26Þ

The antisymmetric part W of the velocity gradient and

consequently Wp vanish in the case of uniaxial stress,

resulting in

Lp ¼ Dp ð27Þ

Then the corresponding constituents of the distortional

vector mi
0 may be represented by the following forms.

m033 ¼ a2
m; m011 ¼ m022 ¼

1

am

m3
0 ¼ ame3;m1

0 ¼ 1ffiffiffiffiffiffi
am
p e1;m2

0 ¼ 1ffiffiffiffiffiffi
am
p e2 ð28Þ

where am is a function to be determined.

The associate flow rule, which defines the symmetric

part of the plastic velocity gradient Dp, has been written by

Rubin as

Dp ¼ CpDp ð29Þ

where Cp is a non-negative function expressing the rate of

plastic deformation and needs to be specified, and Dp is the

direction for plastically isotropic response, which is

specified by the deviatoric portion of the driving stress

tensor T0 in the following way:

Dp ¼
jm
2l
½T0 � ðmi

0 �mj
0Þ�ðmi

0 �mj
0 � 1

3
m0ijIÞ ð30Þ

T0 ¼ lj�1
m ðmr

0 �mr
0 � 1

3
m0rrIÞ ð31Þ

with l being the shear modulus.

For the case of uniaxial deformation, Rubin [16], solv-

ing the above equations, extracted the following expression

for the time evolution of the stretch ratio am of the volume

element, which is subjected to the imposed deformation

_am

am
¼

1þ 1�2m
2ð1þmÞ

a3
m�1

am

	 


1þ 1�2m
6ð1þmÞ

5a3
m�2

am

	 

2
4

3
5

� _a
a
� Cp

18

a3
m � 1

a3
m

� �
4a3

m þ 2
� �� �

ð32Þ

with the initial condition amð0Þ ¼ 1, and m is the Poisson

ratio. It must be mentioned that the stretch ratio a is equal

(1-e) in compression deformation tests.

When plastic deformation is saturated, the stretch ratio

am ¼ as
m is equal to ð1� es

mÞ, where es
m the elastic strain at

this state. The rate of elastic stretch ratio _am however at

yield point is equal to zero. Assuming that the following

factor at yield point is almost equal to unity,

18a3
m

ða2
m þ am þ 1Þð4a3

m þ 2Þ ffi 1 ð33Þ

Then from the second part of Eq. 32, which is also equal

to zero, we obtain the following equation at the saturated

state,

Cs
p ¼

_a
a

18a3
m

ða3
m � 1Þð4a3

m þ 2Þ ffi
_a
a

1

as
m � 1

ð34Þ

In the previous section of the presented model, however,

we obtained the integral Eq. 16 for the rate of plastic

deformation emerged into the deformed material; this fact

leads to the following expression for Cp:

Cp ¼ _ey ¼ _jNðeÞ ¼ _j
Ze

0

1

3

e

ðeÞ2
exp � e

e

h i2=3
� �

de ð35Þ

The unknown factor _j of the above equation can be now

calculated from the limited case of plastic saturation, given

that at this state the integral of Eq. 35 is equal to unity,

Cs
p ¼

_a
a

1

as
m � 1

¼ _j � 1 ð36Þ

Combining Eqs. 35 and 36, we obtain the following

expression for the rate of plastic deformation:

Cp ¼
_a
a

1

as
m � 1

Ze

0

1

3

e

ðeÞ2
exp � e

e

h i2=3
� �

de ð37Þ

As it is clear from the above equation, there in no strain

rate and temperature dependence of plastic deformation,
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given that we avoid the concept of thermal activated

process in our analysis. To overcome this shortcoming, we

proceed to the next section introducing the viscoelastic

behavior as a main part of the constitutive description.

Strain rate and temperature dependence of yield stress

in polymers

The experimental yield stress in polymer solids depends

strongly on the strain rate deformation. It increases also as

the temperature is lowered or the hydrostatic pressure is

raised. On the other hand, when a constant strain below

yield point is applied on amorphous polymers, the material

undergoes a non-linear viscoelastic behavior with a ter-

minal stress for t!1 below yield stress as well. These

observations can give the impression that yield phenome-

non in polymers is fundamentally different from that in

metals that follow the yield criteria, and that it might be a

special and unique non-linear viscoelastic effect. Regard-

ing the length scale of these viscoelastic and viscoplastic

phenomena, some differences also are recorded, given that

the characteristic size of shear bands associated with plastic

phenomena is of the order of some micrometers [29, 30]

that exceeds three orders of magnitude the characteristic

length of pure viscoelastic effect. What is true however is

that these two phenomena coexist in the mechanical

behavior of polymers [5], and it is a matter of total strain

and strain rate applied on the material that decides which of

these two effects will prevail in respect to the other one.

Matsuoka [31], who describes this behavior systematically

in a relevant book ‘‘Relaxation Phenomena in Polymers,’’

comes to the result that there is a critical strain e� which

controls the viscoplastic response of glassy polymers.

When the strain rate _e is slow (_eki\e� where ki is a set of

relaxation modes describing the viscoelastic behavior of

polymers), the yield stress ry is never reached, and the final

steady state stress is that of linear viscoelasticity Eiki _e, with

Ei being the moduli of the corresponding modes. If the

material exhibits no stress overshoot in the yield stress,

then e� ¼ _eki, and the steady state stress is equal to the

yield stress ry. When stress overshoot is observed, which is

common in most glassy polymers, e�\_eki, and beyond

yielding, a transition takes place with a new structure in the

material state, resulting in a new smaller value of ki, which

is equal to e�=_e.
After a more detailed analysis, Matsuoka concluded that

strain magnitude is a crucial factor in determining whether

the viscoelastic or plastic path is followed. Regardless of

transient or steady state conditions, it depends on whether

e\e� or e [ e�.
This behavior according to Matsuoka can be approxi-

mated by a single equation:

r ¼ Ee� 1� exp � e
e�

	 
h i
ð38Þ

Moreover, describing in detail the strain rate and

temperature dependence of this viscoplastic stress,

Matsuoka extracted some scaling rules working very

accurately in each corresponding case. According to the first

rule, a stress–strain curve at _e2 can be predicted from an

experimental stress–strain curve at strain rate _e1 by

multiplying the stress and strain, in the experimental curve

by the scaling factor ð_e2=_e1Þn and ð_e2=_e1Þm for the stress and

strain, respectively, where n and m are the corresponding

exponents of the power law describing the non-linear

viscoelastic effects. In the case of polycarbonate, Matsuoka

used the values n ¼ 0:035 and m ¼ 0:023 to fit the experi-

mental data, but their exact values for various polymers is

always possible from the rate dependence of yield stress.

The temperature dependence of yield stress in Mats-

uoka’s analysis has been given by a second scaling rule

resulting in a simple equation relating the temperature with

the shear modulus of most polymers as follows:

G2=G1 ¼ 1� T2

Tc

� �
= 1� T1

Tc

� �
ð39Þ

where Tc is a critical high temperature up to 50 �C larger

than glass transition temperature (Tc	 Tg) at which the

yield stress vanishes (ry ¼ 0).

G2 and G1 are the unrelaxed shear modulus of the

polymer at the corresponding temperatures T2 and T1,

respectively. This relation has been extracted by Matsuoka

[31] using the energy balanced equation at yield point for

the strain free energy under uniaxial extension, and the

measurements of enthalpy increased (DH) at the same

point. The corresponding entropy increase (DS) is obtained

by the fact that strain free energy (DH � TDS) is zero at

temperature Tc, which extrapolates to ry ¼ 0.

By using these two scaling rules for the strain rate and

temperature dependence of yield effect, and the subsequent

constitutive analysis presented above, we can describe in

detail the yield and post-yield phenomena of polymers. In

the following section, we will use typical experimental

results for various polymers existing in bibliography, and

the solution of related equations to compare our theory

with previous works.

Experimental verification

The theoretical model developed in this work leads to the

prediction of the entire yield behavior of amorphous

polymers, including yield stress, strain softening, strain rate

effect and temperature dependence exhibited by the

materials.
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For the prediction of the yield stress, the only parameters

that are necessary in solving the subsequent equations are the

Young modulus and the three parameters ðe; e�; as
mÞ, which

appeared in Eq. 37 of the plastic rate deformation Cp. The

estimation of the critical strain magnitude e* can be made

through the free volume amount of the tested material.

Following a plausible assumption that when yield tran-

sition is generated inside a box of un-deformed volume V0

containing the fraction free volume tf , the total change of

its volume DV will be given by the simple equation:

tf ¼ DV=V0 ¼ e�3K=E ð40Þ

where K and E are the bulk and elasticity modulus of the

material, the corresponding strain yield e� where maximum

stress is appeared can be easily estimated as follows:

e� ¼ t̂f E=3K ¼ t̂f =ð1� 2mÞ ð41Þ

To obtain the above estimation, we have assumed that

during plastic deformation a part of the matter around free

volume is moved in a suitable way into these cavities.

Small amount of the total volume should then be detected,

as has been verified in many experiments, Spitzing and

Richmond [32].

The elastic stretch ratio as
m at saturated state can be

simply determined by the value of stress rsat the same

state,

as
m � 1 ¼ rs

E
ð42Þ

The strain softening effect does not need any more

assumption, and it is revealed simply from the solution of

constitutive equations. The strain rate and temperature

dependence effect could be described easily by using the

two scaling rules presented in the previous context, and the

fitting of the two parameters n and T2 from the experimental

data in each special material separately.

As tested materials we will take into account three of the

most common amorphous polymers, (PMMA, PC, and PS),

which have been widely studied in recent years by many

authors for checking relevant theories for plastic behavior

in polymers. Among the works existing in bibliography,

there are many data for such materials, for a lot of exper-

iments under various modes of deformation, thermal

treatment, and loading rates were published by Hasan and

Boyce [6–8]. Among these tests, we will use compression

loading experiments in avoiding geometrical instabilities

obscuring the strain softening effect.

Starting with PMMA, we reproduce from the relevant

work by Hasan and Boyce [7] in Figs. 1a and 2a the results

of isothermal constant strain rate, for uniaxial compression

tests on annealed and quenched PMMA at two different

temperatures. The essential features of the typical yield and

post-yield effect are observed in these experiments. The

initial elastic behavior followed by a non-linear viscoelastic

response reaches a maximum stress and an isothermal

material softening after that resulting in a steady flow stress.

The dependence of yield stress on strain rate and tempera-

ture is obvious from these plots, while the reduction of

stress values for the quenched materials in respect to the

annealed ones is also revealed from the comparison of the

corresponding curves between the two figures.

Figures 1 and 2 show the corresponding plots as they

have been calculated from the present theory. More spe-

cifically, the integration of Eq. 32 determines the value of

stretch ratio am at every state of deformation, by incorpo-

rating the corresponding magnitude of strain into the

viscoelastic constitutive Eq. 38, and the calculation of

stress can be made. The integration has been made

numerically, using small time steps, with the software

Mathematica 4, developed by Wolfram [33], and a per-

sonal computer. Gradually decreasing the original time step

up to one tenth, a high convergence has been obtained. In

each step of integration, the calculation of plastic strain rate

is obtained by Eq. 37. Summarizing, the parameters that

are necessary to model the experimental data are as fol-

lows: Parameter e* is directly related with the mean size of

Fig. 1 (a) Calculated plots for

annealed PMMA specimens

deformed to different (%)

applied strains (scan rates,

-0.001, -0.0005, -.0001 s-1)

at temperatures 296 K and

323 K. (b) Experimental plots

for annealed PMMA specimens

deformed to different (%)

applied strains (scan rates,

-0.001, -0.0005, -.0001 s-1)

at temperatures 296 K and

323 K (Reproduced from Hasan

and Boyce, Ref. [7])
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various types of defects. It can be estimated independently

from free volume measurements with various techniques.

In our case it was fitted for the better description of

experimental curves. Parameter e expresses the mean value

of the distributed strain into the material. As discussed

earlier, this parameter value is similar to the saturated

elastic strain 1 - am
s . The quantity am

s is the saturated

stretch ratio and the corresponding saturated strain is

obtained by dividing the almost stable value of stress,

establishing after strain softening, by the apparent modulus

in the post-yield region, before strain hardening occurs.

Parameter n is a fitting constant, to capture the strain rate

effect. So, the basic constants for the modeling of yield

response are the quantities e and e*.

Table 1 contains the values of parameters used in the

corresponding calculations where the magnitude of the

elastic constants ðE; mÞ has been taken from the corre-

sponding work by Hasan and Boyce [6–8]. In order to

obtain the reduced stress values of the quenched materials

of Fig. 2, we assumed that the corresponding reduction of

the controlling parameter e� is due to the reduction of bulk

modulus for such specimens given that larger amounts of

free volume will be frozen inside quenched materials when

the temperature is suddenly changed, Hasan et al. [7]. By

comparing the experimental and calculated plots shown in

Figs. 1a, b and 2a, b for the case of annealed and quenched

PMMA specimens, we conclude that a strong evidence is

raised for the plausible assumptions of this work in

describing the yield phenomenon of amorphous polymers.

We proceed now to examine how this model works

on similar data for another amorphous polymer like PS.

Experimental results under compression loading for this

glassy polymer are also published by Hasan and Boyce [8]

together with similar tests for PMMA and PC. In this work,

systematic measurements have been executed on annealed

and quenched materials deformed in compression to vari-

ous levels accompanied by differential scanning

calorimetric (DSC) tests on the unloading specimens. The

DSC scans release the change of specimen enthalpy when

heating at constant rate and lead to a very good insight into

the evolution of material state with inelastic straining.

In Fig. 3a, we reproduce the stress–strain plots for the

annealed and quenched PS at the temperature 296 K and

compression loading at strain rate -0.001 s-1. Comparing

these plots with the corresponding curves of Figs. 1a and

2a for PMMA at the same temperature and strain rate, we

notice the differences in the maximum yield stresses

(110 MPa for PMMA and 92 MPa for PS). By plotting in

Fig. 3 the corresponding stress–strain curves as have been

calculated using the presented model, this difference can be

analyzed by comparing the parameters used in integrating

the constitutive equations. Table 2 presents the elastic

constants and the subsequent parameters used in the rele-

vant calculations for the case of PS. In Fig. 3a and b, the

experimental and theoretical results for the case of PS are

also presented, exhibiting again the appropriateness of the

presented model for yield phenomenon in polymers.

If we proceed now to the case of PC as another example

for the validity of the presented theory, we will use the

experimental data from a relative work by Boyce and

Arruda [34], concerning cylindrical compression specimens

Fig. 2 (a) Calculated plots for quenched PMMA specimens

deformed to different (%) applied strains (scan rates, -0.001,

-0.0005, -.0001 s-1) at temperatures 296 K and 323 K (b) Exper-

imental plots for quenched PMMA specimens deformed to different

(%) applied strains (scan rates, -0.001, -0.0005, -.0001 s-1) at

temperatures 296 K and 323 K (Reproduced from Hasan and Boyce,

Ref. [7])

Table 1 Model parameter values for annealed and quenched PMMA

Sample E (MPa) m e� e as
m n Tc (K)

Annealed 2,300 0.3 0.10 0.03 1.03 0.05 379

Quenched 2,300 0.3 0.08 0.03 1.03 0.05 379
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subjected to five different strain rates ranging from 1.0 s-1

to 0.0001 s-1. The constant strain rates, and the large

compression strains up to 125% obtained at room temper-

ature for the examined PC, reveal very clearly a planar

molecular orientation process, which results in the strain

hardening effect under the loading conditions. To obtain the

complete calculation of the stress under these conditions,

including this stage of deformation, a supplementary term

for stress should be taken into account due to the entropic

hardening. Modeling of strain hardening has been an inter-

esting issue. A lot of approaches have been introduced, and

it is worth mentioning some interesting works introduced by

Hoy and Robbins [35–37], which offer a deep understanding

of this effect. In our case, the three-chain model of James

and Guth [38] has been used. In this way, the total stress may

be expressed as

rtotal ¼ rþ rh ð43Þ

where r is obtained by solving the system of constitutive

equations as in the previous cases, and rh is a stress

attributed to the strain hardening and is given by

rh ¼ Gr

ffiffiffiffi
N
p

3
kiL
�1 kiffiffiffiffi

N
p
� �

� 1

3

X3

j¼1

kjL
�1 kjffiffiffiffi

N
p
� �" #

ð44Þ

where L�1 is the inverse Langevin function, ki are the

stretch ratios in the three principal directions, with k1 ¼
a� am and k2 ¼ k3 ¼ 1=ða� amÞ0:5 and N is the equiva-

lent number of rigid links between entanglements. As is

mentioned by Boyce et al. [34],
ffiffiffiffi
N
p

is equal to the terminal

or locking stretch. From the true stress–strain curves of

Fig. 4a, locking occurs at a strain almost equal to 1.25,

resulting in a value for N approximately equal to 1.8. Gr is

the strain hardening modulus, taken to be equal to 5 MPa.

The theoretical results of stress versus strain, for the five

strain rates at compression loading, are plotted in Fig. 4, and

the corresponding used parameters are listed in Table 3.

Fig. 3 (a) Calculated plots for

annealed and quenched PS

specimens deformed to different

(%) applied strains (scan rate,

-0.001 s-1) at temperature

296 K. (b) Experimental plots

for annealed and quenched PS

specimens deformed to different

(%) applied strains (scan rate,

-0.001 s-1) at temperature

296 K (Reproduced from Hasan

and Boyce, Ref. [6])

Table 2 Model parameter values for annealed and quenched PS

Sample E (MPa) m e� e as
m n

Annealed 3,000 0.3 0.070 0.02 1.02 0.05

Quenched 3,000 0.3 0.060 0.02 1.02 0.05

Fig. 4 (a) Calculated plots for

PC specimens deformed to

different (%) applied strains

(scan rates, -1, -0.1, -0.01,

-0.001, -0.0001 s-1) at

temperature 296 K. (b)

Experimental plots for PC

specimens deformed to different

(%) applied strains (scan rates,

-1, -0.1, -0.01, -0.001,

-0.0001 s-1) at temperature

296 K (Reproduced from Boyce

and Arruda, Ref. [34])
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Conclusions

In this work, an attempt has been made to understanding

the fundamental manner by which glassy polymers yield,

under mechanical deformation process. The concept of free

volume, which has been used many times in the past,

enlightening this phenomenon, has been reconsidered in

the presented model but in a different way. The change of

both free volume mean value and the free volume distri-

bution, in respect to deformation, has been experimentally

verified [25] for glassy polymers. In the present work, as a

first approximation, this fact is not taken into account. This

fact will be analyzed in a future work. Here, we do not

emphasize on free volume changes during deformation

process as a possible mechanism for explaining the

reduction of the material resistance under loading condi-

tions, but we use the free volume distribution as the origin

for strain localization and strain non-uniformity under

loading state. The formulation of this inhomogeneity by a

distribution density function results in a plausible expla-

nation of the plastic behavior in polymers. The fact that the

yield process does not appear suddenly on the loading

material, but it takes part progressively coexisting with

viscoelastic deformation, is a serious evidence that it is

generated in various positions spread inside the matter

around localized states, Olenik [39]. The manner by which

the plastic deformation proceeds is a matter of the amount

of these sites, that take part during the evolution of the

yield effect. Consequently, the necessity of a distribution

function for these sites is then plausible for describing the

rate by which the plastic deformation proceeds. On the

other hand, the existence and the degree of strain non-

uniformity vary from polymer to polymer, and further can

be modified by temperature, strain rate, and history. These

events, which have been experimentally verified for the

materials considered in this work (PMMA, PS, and PC),

are taken into account for the quantitative description of

yield stress and strain softening, exhibited under most

conditions in polymer glasses.

What is worth emphasizing in this analysis is the fact

that strain softening effect, which is a direct result of strain

non-uniformity, is captured because we avoid the calcula-

tion of the plastic deformation gradient tensor as usually

done in the context of plasticity theories of polar decom-

position for the total deformation gradient. This

determination would oblige us to integrate the associated

flow rule equation across all reference gauge length

assuming a uniform distribution of plastic events into the

material, and consequently obscuring the main assumption

of strain non-uniformity. In contrast to this approach, the

kinematic formulation introduced by Rubin avoids this

determination by concentrating on rate evolution equations

for variables established on a micromechanical base. Under

such a description, the yield phenomenon takes part when

the rate deformation per unit strain becomes equal to

plastic deformations emerged into the loaded material.
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